Asymptotic expansions of a manifold near its curve of singular points

Alexander Bruno and Alijon Azimov

Abstract. In [1–3] parametric expansions near 5 singular points and 3 curves consisting of singular points were computed for a two-dimensional algebraic manifold Ω . Here we present general methods for computing the expansions of a manifold near its curve of singular points and their application to a single curve \mathcal{F} .

1. Introduction

In [4–8] the study of the three-parameter family of special homogeneous spaces in terms of the normalized Ricci flow was started. Ricci flows give the evolution of Einstein metrics on a manifold. The equation of the normalized Ricci flow reduces to a system of two ordinary differential equations with three parameters a_1, a_2 and a_3 :

$$\frac{dx_1}{dt} = \tilde{f}_1(x_1, x_2, a_1, a_2, a_3),
\frac{dx_2}{dt} = \tilde{f}_2(x_1, x_2, a_1, a_2, a_3),$$
(1)

where \tilde{f}_1 and \tilde{f}_2 are some concrete functions.

The singular points of this system correspond to Einstein invariant metrics. At a singular (fixed) point x_1^0 , x_2^0 the system (1) has two eigenvalues λ_1 and λ_2 . If at least one of them is equal to zero, the singular point x_1^0 , x_2^0 is called degenerate. In [4–8] a theorem is proved that the set Ω of values of parameters a_1 , a_2 , a_3 , at which the system (1) has at least one degenerate singular point is described by the equation

$$\begin{aligned} Q(s_1, s_2, s_3) &\stackrel{\text{def}}{=} (2s_1 + 4s_3 - 1) \left(64s_1^5 - 64s_1^4 + 8s_1^3 + 240s_1^2s_3 - 1536s_1s_3^2 - \\ & -4096s_3^3 + 12s_1^2 - 240s_1s_3 + 768s_3^2 - 6s_1 + 60s_3 + 1 \right) - \\ & - 8s_1s_2(2s_1 + 4s_3 - 1)(2s_1 - 32s_3 - 1)(10s_1 + 32s_3 - 5) - \\ & - 16s_1^2s_2^2 \left(52s_1^2 + 640s_1s_3 + 1024s_3^2 - 52s_1 - 320s_3 + 13 \right) + \\ & + 64(2s_1 - 1)s_2^3(2s_1 - 32s_3 - 1) + 2048s_1(2s_1 - 1)s_2^4 = 0, \end{aligned}$$

where s_1, s_2, s_3 are elementary symmetric polynomials, equal, respectively, to

$$s_1 = a_1 + a_2 + a_3$$
, $s_2 = a_1a_2 + a_1a_3 + a_2a_3$, $s_3 = a_1a_2a_3$.

In [9] for symmetry reasons, from coordinates $\mathbf{a} = (a_1, a_2, a_3)$ authors passed to the coordinates $\mathbf{A} = (A_1, A_2, A_3)$ by linear substitution

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = M \cdot \begin{pmatrix} A_1 \\ A_2 \\ A_3 \end{pmatrix}, \quad M = \begin{pmatrix} (1+\sqrt{3})/6 & (1-\sqrt{3})/6 & 1/3 \\ (1-\sqrt{3})/6 & (1+\sqrt{3})/6 & 1/3 \\ -1/3 & -1/3 & 1/3 \end{pmatrix}$$

Definition 1. Let $\varphi(X)$ be some polynomial, $X = (x_1, \ldots, x_n)$. Point $X = X^0$ of the set $\varphi(X) = 0$ is called a singular point of k-order, if in this point all partial derivatives of the polynomial $\varphi(X)$ by x_1, \ldots, x_n go to zero up to k-th order and at least one partial derivative of order k + 1 does not go to zero.

In [9] all singular points of the manifold Ω were found in coordinates $\mathbf{A} = (A_1, A_2, A_3)$. Five third-order points,

Name	Coordinates A
$P_1^{(3)}$	(0, 0, 3/4)
$P_{2}^{(3)}$	(0, 0, -3/2)
$P_{3}^{(3)}$	$\left(-\frac{1+\sqrt{3}}{2},\frac{\sqrt{3}-1}{2},\frac{1}{2}\right)$
$P_4^{(3)}$	$\left(\frac{\sqrt{3}-1}{2},-\frac{1+\sqrt{3}}{2},\frac{1}{2}\right)$
$P_{5}^{(3)}$	(1, 1, 1/2)

three second-order points,

Name	Coordinates A
$P_{1}^{(2)}$	$\left(\frac{1+\sqrt{3}}{4}, \frac{1-\sqrt{3}}{4}, \frac{1}{2}\right)$
$P_2^{(2)}$	$\left(\frac{1-\sqrt{3}}{4},\frac{1+\sqrt{3}}{4},\frac{1}{2}\right)$
$P_2^{(3)}$	(1, 1, 1/2)

and three more algebraic curves of singular points of first order

$$\mathcal{F} = \left\{ a_1 = a_2, 16a_1^3 + 16a_1^2a_3 - 4a_1 - 2a_3 + 1 = 0 \right\},$$
$$\mathcal{I} = \left\{ A_1 + A_2 + 1 = 0, A_3 = \frac{1}{2} \right\},$$
$$\mathcal{K} = \left\{ A_1 = -\frac{9}{4}th\left(t\right), \ A_2 = -\frac{9}{4}h\left(t\right), \ A_3 = \frac{3}{4}, \ h\left(t\right) = \frac{t^2 + 1}{(t+1)(t^2 - 4t + 1)} \right\}.$$

In this case, the points $P_3^{(3)}$, $P_4^{(3)}$ and $P_5^{(3)}$ are of the same type, they pass into each other at rotation around the origin of the plane A_1, A_2 by an angle $2\pi/3$, just as all points $P_1^{(2)}$, $P_2^{(2)}$, $P_3^{(2)}$. The curves \mathcal{F} , \mathcal{I} , \mathcal{K} correspond to two more curves of the same type. Therefore, it is enough to study the manifold Ω in the neighborhoods of the points $P_1^{(3)}$, $P_2^{(3)}$, $P_5^{(3)}$, $P_3^{(2)}$ and curves \mathcal{F} , \mathcal{I} and \mathcal{K} . Moreover, in [9] the cross sections of the manifold Ω by the planes $A_3 = \text{const}$, were calculated and it was shown that in a finite part of the space $\mathbb{R}^3 = \{A_1, A_2, A_3\}$ the manifold Ω consists of one-dimensional branches F_1, F_2, F_3 , and two-dimensional branches G_1, G_2, G_3 which are broken into parts F_i^{\pm}, G_i^{\pm} with boundaries at the plane $A_3 = 1/2$.

The structure of the manifold Ω near singular points $P_i^{(3)}$ and $P_i^{(2)}$ was considered in [1,2]. The structure of the manifold Ω near three algebraic curves \mathcal{I} , \mathcal{K} , \mathcal{F} of singular points of the first order was considered in [3]. For this study, we use the following algorithm consisting of 8 steps.

2. Calculation scheme

- Step 1: Introduce local coordinates $X = (x_1, x_2, x_3)$. If we consider a straight line consisting of singular points (as \mathcal{I}), then one coordinate x_1 is directed along the line and coordinates x_2, x_3 describe deviations from the line. If the curve is located on a plane, we introduce the coordinate x_3 , normal to this plane, coordinates x_1, x_2 of the curve on the plane are parameterized $x_1 = b_1(t), x_2 = b_2(t)$ and a coordinate $y_2 = x_2 - b(t)$ of the deviation from this curve.
- **Step 2:** The original polynomial $R(\mathbf{A})$ write in local coordinates as

$$g(t, y_2, x_3) = \sum \varphi(t)_{pq} y_2^p x_3^q,$$
(2)

and compute its support $\mathbf{S} = \{(p,q) : \varphi_{pq} \neq 0\}$. Let the support \mathbf{S} consists of points $(p_i, q_i), i = 1, \ldots, k$.

Step 3: Newton's polygon $\Gamma(g)$ is calculated as a convex hull of the support **S**:

$$\Gamma(g) = \left\{ (p,q) = \sum_{i=1}^{k} \lambda_i(p_i, q_i), \ \lambda_i \ge 0, \ i = 1, \dots, k, \ \sum_{i=1}^{k} \lambda_i = 1 \right\}.$$

Boundary $\partial \Gamma$ of polygon $\Gamma(g)$ consists of its vertices $\Gamma_j^{(0)}$ and edges $\Gamma_j^{(1)}$ which we call as generalized faces. Here j is the number of the generalized face $\Gamma_j^{(d)}$. Each face $\Gamma_j^{(d)}$ corresponds to its truncated polynomial

$$\hat{g}_j^{(d)}(Y) = \sum g_{(p,q)} y_2^p x_3^q \text{ over } (p,q) \in \mathbf{S} \cap \Gamma_j^{(d)}$$

and the normal cone $\mathbf{U}_{j}^{(d)}$, consisting of all normals to the face $\Gamma_{j}^{(d)}$, which are the external normals to the polygon Γ . For their computation we use PolyhedralSets of the computer algebra system (CAS) Maple package [10].

- Step 4: Select the faces $\Gamma_j^{(1)}$ with normals $N_j \leq 0$ and corresponding truncated polynomials $\hat{g}_j^{(1)}(t, y_2, x_3)$.
- **Step 5:** For each selected truncated polynomial $\hat{g}_{j}^{(1)}(t, y_2, x_3)$, we calculate the corresponding power transformations

$$(\ln y_2, \ln x_3) = (\ln z_1, \ln z_3) \alpha, \tag{3}$$

where α is such a unimodular matrix 2×2 , that

$$\hat{g}_{j}^{(1)}(t, y_{2}, x_{3}) = h(z_{1}, t)z_{3}^{l}$$

$$\tag{4}$$

with a multiplier z_3^l .

Step 6: We make the power transformation (3) in the polynomial (2) itself and write it in the following form

$$g(Z) = T(z_1, t, z_3) = z_3^l \sum_{k=0}^m T_k(z_1, t) z_3^k,$$

with some natural number m. The polynomial $T_k(z_1, t)$ is calculated by the command coeff(T,z[k],m) in CAS Maple, and $T_0(z_1, t) = h(z_1, t)$ from Equality (4).

Step 7: If $T_0(z_1(t), t) \neq 0$, then we substitute in the polynomial $T(z_1, t, z_3)z_3^{-l}$

$$z_1 = b_1(t) + \varepsilon, \quad z_2 = b_2(t) + \varepsilon \tag{5}$$

and obtain the function $u(\varepsilon, t, z_3) = T(z_1, z_2, z_3)z_3^{-l}$. Now we apply to the equation $u(\varepsilon, t, z_3) = 0$ Theorem 1 [1] on the generalized implicit function and obtain the parametric expansion

$$\varepsilon = \sum_{k=1}^{\infty} c_k(t) z_3^k.$$
(6)

Step 8: Calculate several terms of expansion (6) and substitute them into (5). The result is substituted into the power transformation (3) and we obtain the parametric expansion of Ω into a power series by z_3 , with coefficients which are rational functions of the t.

3. Structure of the manifold Ω near the Curve \mathcal{F} of singular points

Theorem 1. The curve \mathcal{F} consists of branches $F_1^{\pm}, F_2^{\pm}, F_3^{\pm}$. On them two-dimensional branches $G_1^{\pm}, G_2^{\pm}, G_3^{\pm}$ of the manifold Ω meet (but do not intersect).

References

- A.D. Bruno and A.A. Azimov. Parametric expansions of an algebraic variety near its singularities. Axioms 2023, p. 469. https://doi.org/10.3390/axioms12050469.
- [2] A.D. Bruno and A.A. Azimov. Parametric expansions of an algebraic variety near its singularities. International Conference on Polynomial Computer Algebra St.Petersburg, April 17-22, 2023. page 22-26. ISSBN 978-5-9651-1473-3.
- [3] A.D. Bruno and A.A. Azimov. Parametric expansions of an algebraic variety near its singularities II. Axioms 2024, 13(2), 106. https://doi.org/10.3390/ axioms13020106.
- [4] A.L. Besse. *Einstein Manifolds*, Springer: Berlin, Germany, 1987.
- [5] N.A. Abiev, A. Arvanitoyeorgos, Y.G. Nikonorov and P. Siasos. The dynamics of the Ricci flow on generalized Wallach spaces, Differ. Geom. Its Appl. 2014, 35, 26-43. https://doi.org/10.1016/j.difgeo.2014.02.002.
- [6] N.A. Abiev, A. Arvanitoyeorgos, Y.G. Nikonorov and P. Siasos. The normalized Ricci flow on generalized Wallach spaces, In Mathematical Forum; Studies in Mathematical Analysis; Yuzhnii Matematicheskii Institut, Vladikavkazskii Nauchnii Tsentr Rossiyskoy Akademii Nauk: Vladikavkaz, Russia, 2014; Volume 8, pp. 25–42. (In Russian)
- [7] N.A. Abiev and Y.G. Nikonorov. The evolution of positively curved invariant Riemannian metrics on the Wallach spaces under the Ricci flow. Ann. Glob. Anal. Geom. 2016, 50, 65-84. https://doi.org/10.1007/s10455-016-9502-8.
- [8] M. Jablonski. Homogeneous Einstein manifolds., Rev. Unión Matemática Argent. 2023, 64, 461-485. https://doi.org/10.33044/revuma.3588.
- [9] A.D. Bruno and A.B. Batkhin. Investigation of a real algebraic surface.. Program. Comput. Softw. 2015, 41, 74-82. https://doi.org/10.1134/S0361768815020036.
- [10] I.Thompson. Understanding Maple, Cambridge University Press: Cambridge, UK, 2016.

Alexander Bruno Singular Problems Department Keldysh Institute of Applied Mathematics of RAS Moscow, Russia e-mail: abruno@keldysh.ru

Alijon Azimov Algebra and Geometry Department Samarkand State University after Sh. Rashidov Samarkand, Uzbekistan e-mail: Azimov_Alijon_Akhmadovich@mail.ru