Asymptotic expansions of a manifold near its curve of singular points

Alexander Bruno and Alijon Azimov

Abstract

In [1-3] parametric expansions near 5 singular points and 3 curves consisting of singular points were computed for a two-dimensional algebraic manifold Ω. Here we present general methods for computing the expansions of a manifold near its curve of singular points and their application to a single curve \mathcal{F}.

1. Introduction

In [4-8] the study of the three-parameter family of special homogeneous spaces in terms of the normalized Ricci flow was started. Ricci flows give the evolution of Einstein metrics on a manifold. The equation of the normalized Ricci flow reduces to a system of two ordinary differential equations with three parameters a_{1}, a_{2} and a_{3} :

$$
\begin{align*}
& \frac{d x_{1}}{d t}=\tilde{f}_{1}\left(x_{1}, x_{2}, a_{1}, a_{2}, a_{3}\right), \tag{1}\\
& \frac{d x_{2}}{d t}=\tilde{f}_{2}\left(x_{1}, x_{2}, a_{1}, a_{2}, a_{3}\right),
\end{align*}
$$

where \tilde{f}_{1} and \tilde{f}_{2} are some concrete functions.
The singular points of this system correspond to Einstein invariant metrics. At a singular (fixed) point x_{1}^{0}, x_{2}^{0} the system (1) has two eigenvalues λ_{1} and λ_{2}. If at least one of them is equal to zero, the singular point x_{1}^{0}, x_{2}^{0} is called degenerate. In [4-8] a theorem is proved that the set Ω of values of parameters a_{1}, a_{2}, a_{3}, at which the system (1) has at least one degenerate singular point is described by the equation

$$
\begin{aligned}
Q\left(s_{1}, s_{2}, s_{3}\right) \stackrel{\text { def }}{=} & \left(2 s_{1}+4 s_{3}-1\right)\left(64 s_{1}^{5}-64 s_{1}^{4}+8 s_{1}^{3}+240 s_{1}^{2} s_{3}-1536 s_{1} s_{3}^{2}-\right. \\
& \left.-4096 s_{3}^{3}+12 s_{1}^{2}-240 s_{1} s_{3}+768 s_{3}^{2}-6 s_{1}+60 s_{3}+1\right)- \\
& -8 s_{1} s_{2}\left(2 s_{1}+4 s_{3}-1\right)\left(2 s_{1}-32 s_{3}-1\right)\left(10 s_{1}+32 s_{3}-5\right)- \\
& -16 s_{1}^{2} s_{2}^{2}\left(52 s_{1}^{2}+640 s_{1} s_{3}+1024 s_{3}^{2}-52 s_{1}-320 s_{3}+13\right)+ \\
& +64\left(2 s_{1}-1\right) s_{2}^{3}\left(2 s_{1}-32 s_{3}-1\right)+2048 s_{1}\left(2 s_{1}-1\right) s_{2}^{4}=0
\end{aligned}
$$

where s_{1}, s_{2}, s_{3} are elementary symmetric polynomials, equal, respectively, to

$$
s_{1}=a_{1}+a_{2}+a_{3}, \quad s_{2}=a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}, \quad s_{3}=a_{1} a_{2} a_{3} .
$$

In [9] for symmetry reasons, from coordinates $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ authors passed to the coordinates $\mathbf{A}=\left(A_{1}, A_{2}, A_{3}\right)$ by linear substitution

$$
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=M \cdot\left(\begin{array}{l}
A_{1} \\
A_{2} \\
A_{3}
\end{array}\right), \quad M=\left(\begin{array}{ccc}
(1+\sqrt{3}) / 6 & (1-\sqrt{3}) / 6 & 1 / 3 \\
(1-\sqrt{3}) / 6 & (1+\sqrt{3}) / 6 & 1 / 3 \\
-1 / 3 & -1 / 3 & 1 / 3
\end{array}\right)
$$

Definition 1. Let $\varphi(X)$ be some polynomial, $X=\left(x_{1}, \ldots, x_{n}\right)$. Point $X=X^{0}$ of the set $\varphi(X)=0$ is called a singular point of k-order, if in this point all partial derivatives of the polynomial $\varphi(X)$ by x_{1}, \ldots, x_{n} go to zero up to k-th order and at least one partial derivative of order $k+1$ does not go to zero.

In [9] all singular points of the manifold Ω were found in coordinates $\mathbf{A}=$ $\left(A_{1}, A_{2}, A_{3}\right)$. Five third-order points,

Name	Coordinates A
$P_{1}^{(3)}$	$(0,0,3 / 4)$
$P_{2}^{(3)}$	$(0,0,-3 / 2)$
$P_{3}^{(3)}$	$\left(-\frac{1+\sqrt{3}}{2}, \frac{\sqrt{3}-1}{2}, \frac{1}{2}\right)$
$P_{4}^{(3)}$	$\left(\frac{\sqrt{3}-1}{2},-\frac{1+\sqrt{3}}{2}, \frac{1}{2}\right)$
$P_{5}^{(3)}$	$(1,1,1 / 2)$

three second-order points,

Name	Coordinates A
$P_{1}^{(2)}$	$\left(\frac{1+\sqrt{3}}{4}, \frac{1-\sqrt{3}}{4}, \frac{1}{2}\right)$
$P_{2}^{(2)}$	$\left(\frac{1-\sqrt{3}}{4}, \frac{1+\sqrt{3}}{4}, \frac{1}{2}\right)$
$P_{2}^{(3)}$	$(1,1,1 / 2)$

and three more algebraic curves of singular points of first order

$$
\begin{gathered}
\mathcal{F}=\left\{a_{1}=a_{2}, 16 a_{1}^{3}+16 a_{1}^{2} a_{3}-4 a_{1}-2 a_{3}+1=0\right\} \\
\mathcal{I}=\left\{A_{1}+A_{2}+1=0, A_{3}=\frac{1}{2}\right\} \\
\mathcal{K}=\left\{A_{1}=-\frac{9}{4} t h(t), A_{2}=-\frac{9}{4} h(t), A_{3}=\frac{3}{4}, h(t)=\frac{t^{2}+1}{(t+1)\left(t^{2}-4 t+1\right)}\right\} .
\end{gathered}
$$

In this case, the points $P_{3}^{(3)}, P_{4}^{(3)}$ and $P_{5}^{(3)}$ are of the same type, they pass into each other at rotation around the origin of the plane A_{1}, A_{2} by an angle $2 \pi / 3$, just as all points $P_{1}^{(2)}, P_{2}^{(2)}, P_{3}^{(2)}$. The curves $\mathcal{F}, \mathcal{I}, \mathcal{K}$ correspond to two more curves of the same type. Therefore, it is enough to study the manifold Ω in the neighborhoods of the points $P_{1}^{(3)}, P_{2}^{(3)}, P_{5}^{(3)}, P_{3}^{(2)}$ and curves \mathcal{F}, \mathcal{I} and \mathcal{K}. Moreover, in [9] the cross sections of the manifold Ω by the planes $A_{3}=$ const, were calculated and it was shown that in a finite part of the space $\mathbb{R}^{3}=\left\{A_{1}, A_{2}, A_{3}\right\}$ the manifold Ω consists of one-dimensional branches F_{1}, F_{2}, F_{3}, and two-dimensional branches G_{1}, G_{2}, G_{3} which are broken into parts $F_{i}^{ \pm}, G_{i}^{ \pm}$with boundaries at the plane $A_{3}=1 / 2$.

The structure of the manifold Ω near singular points $P_{i}^{(3)}$ and $P_{i}^{(2)}$ was considered in [1,2]. The structure of the manifold Ω near three algebraic curves \mathcal{I}, \mathcal{K}, \mathcal{F} of singular points of the first order was considered in [3]. For this study, we use the following algorithm consisting of 8 steps.

2. Calculation scheme

Step 1: Introduce local coordinates $X=\left(x_{1}, x_{2}, x_{3}\right)$. If we consider a straight line consisting of singular points (as \mathcal{I}), then one coordinate x_{1} is directed along the line and coordinates x_{2}, x_{3} describe deviations from the line. If the curve is located on a plane, we introduce the coordinate x_{3}, normal to this plane, coordinates x_{1}, x_{2} of the curve on the plane are parameterized $x_{1}=b_{1}(t), x_{2}=b_{2}(t)$ and a coordinate $y_{2}=x_{2}-b(t)$ of the deviation from this curve.
Step 2: The original polynomial $R(\mathbf{A})$ write in local coordinates as

$$
\begin{equation*}
g\left(t, y_{2}, x_{3}\right)=\sum \varphi(t)_{p q} y_{2}^{p} x_{3}^{q}, \tag{2}
\end{equation*}
$$

and compute its support $\mathbf{S}=\left\{(p, q): \varphi_{p q} \not \equiv 0\right\}$. Let the support \mathbf{S} consists of points $\left(p_{i}, q_{i}\right), i=1, \ldots, k$.
Step 3: Newton's polygon $\Gamma(g)$ is calculated as a convex hull of the support \mathbf{S} :

$$
\Gamma(g)=\left\{(p, q)=\sum_{i=1}^{k} \lambda_{i}\left(p_{i}, q_{i}\right), \lambda_{i} \geqslant 0, i=1, \ldots, k, \sum_{i=1}^{k} \lambda_{i}=1\right\}
$$

Boundary $\partial \Gamma$ of polygon $\Gamma(g)$ consists of its vertices $\Gamma_{j}^{(0)}$ and edges $\Gamma_{j}^{(1)}$ which we call as generalized faces. Here j is the number of the generalized face $\Gamma_{j}^{(d)}$. Each face $\Gamma_{j}^{(d)}$ corresponds to its truncated polynomial

$$
\hat{g}_{j}^{(d)}(Y)=\sum g_{(p, q)} y_{2}^{p} x_{3}^{q} \text { over }(p, q) \in \mathbf{S} \cap \Gamma_{j}^{(d)}
$$

and the normal cone $\mathbf{U}_{j}^{(d)}$, consisting of all normals to the face $\Gamma_{j}^{(d)}$, which are the external normals to the polygon Γ. For their computation we use PolyhedralSets of the computer algebra system (CAS) Maple package [10].
Step 4: Select the faces $\Gamma_{j}^{(1)}$ with normals $N_{j} \leqslant 0$ and corresponding truncated polynomials $\hat{g}_{j}^{(1)}\left(t, y_{2}, x_{3}\right)$.
Step 5: For each selected truncated polynomial $\hat{g}_{j}^{(1)}\left(t, y_{2}, x_{3}\right)$, we calculate the corresponding power transformations

$$
\begin{equation*}
\left(\ln y_{2}, \ln x_{3}\right)=\left(\ln z_{1}, \ln z_{3}\right) \alpha \tag{3}
\end{equation*}
$$

where α is such a unimodular matrix 2×2, that

$$
\begin{equation*}
\hat{g}_{j}^{(1)}\left(t, y_{2}, x_{3}\right)=h\left(z_{1}, t\right) z_{3}^{l} \tag{4}
\end{equation*}
$$

with a multiplier z_{3}^{l}.
Step 6: We make the power transformation (3) in the polynomial (2) itself and write it in the following form

$$
g(Z)=T\left(z_{1}, t, z_{3}\right)=z_{3}^{l} \sum_{k=0}^{m} T_{k}\left(z_{1}, t\right) z_{3}^{k},
$$

with some natural number m. The polynomial $T_{k}\left(z_{1}, t\right)$ is calculated by the command coeff ($\mathrm{T}, \mathrm{z}[\mathrm{k}], \mathrm{m}$) in CAS Maple, and $T_{0}\left(z_{1}, t\right)=h\left(z_{1}, t\right)$ from Equality (4).
Step 7: If $T_{0}\left(z_{1}(t), t\right) \not \equiv 0$, then we substitute in the polynomial $T\left(z_{1}, t, z_{3}\right) z_{3}^{-l}$

$$
\begin{equation*}
z_{1}=b_{1}(t)+\varepsilon, \quad z_{2}=b_{2}(t)+\varepsilon \tag{5}
\end{equation*}
$$

and obtain the function $u\left(\varepsilon, t, z_{3}\right)=T\left(z_{1}, z_{2}, z_{3}\right) z_{3}^{-l}$. Now we apply to the equation $u\left(\varepsilon, t, z_{3}\right)=0$ Theorem 1 [1] on the generalized implicit function and obtain the parametric expansion

$$
\begin{equation*}
\varepsilon=\sum_{k=1}^{\infty} c_{k}(t) z_{3}^{k} \tag{6}
\end{equation*}
$$

Step 8: Calculate several terms of expansion (6) and substitute them into (5). The result is substituted into the power transformation (3) and we obtain the parametric expansion of Ω into a power series by z_{3}, with coefficients which are rational functions of the t.

3. Structure of the manifold Ω near the $\operatorname{Curve} \mathcal{F}$ of singular points

Theorem 1. The curve \mathcal{F} consists of branches $F_{1}^{ \pm}, F_{2}^{ \pm}, F_{3}^{ \pm}$. On them two-dimensional branches $G_{1}^{ \pm}, G_{2}^{ \pm}, G_{3}^{ \pm}$of the manifold Ω meet (but do not intersect).

References

[1] A.D. Bruno and A.A. Azimov. Parametric expansions of an algebraic variety near its singularities. Axioms 2023, p. 469. https://doi.org/10.3390/axioms12050469.
[2] A.D. Bruno and A.A. Azimov. Parametric expansions of an algebraic variety near its singularities. International Conference on Polynomial Computer Algebra St.Petersburg, April 17-22, 2023. page 22-26. ISSBN 978-5-9651-1473-3.
[3] A.D. Bruno and A.A. Azimov. Parametric expansions of an algebraic variety near its singularities II. Axioms 2024, 13(2), 106. https://doi.org/10.3390/ axioms 13020106.
[4] A.L. Besse. Einstein Manifolds, Springer: Berlin, Germany, 1987.
[5] N.A. Abiev, A. Arvanitoyeorgos, Y.G. Nikonorov and P. Siasos. The dynamics of the Ricci flow on generalized Wallach spaces, Differ. Geom. Its Appl. 2014, 35, 26-43. https://doi.org/10.1016/j.difgeo.2014.02.002.
[6] N.A. Abiev, A. Arvanitoyeorgos, Y.G. Nikonorov and P. Siasos. The normalized Ricci flow on generalized Wallach spaces, In Mathematical Forum; Studies in Mathematical Analysis; Yuzhnii Matematicheskii Institut, Vladikavkazskii Nauchnii Tsentr Rossiyskoy Akademii Nauk: Vladikavkaz, Russia, 2014; Volume 8, pp. 25-42. (In Russian)
[7] N.A. Abiev and Y.G. Nikonorov. The evolution of positively curved invariant Riemannian metrics on the Wallach spaces under the Ricci flow. Ann. Glob. Anal. Geom. 2016, 50, 65-84. https://doi.org/10.1007/s10455-016-9502-8.
[8] M. Jablonski. Homogeneous Einstein manifolds., Rev. Unión Matemática Argent. 2023, 64, 461-485. https://doi.org/10.33044/revuma. 3588.
[9] A.D. Bruno and A.B. Batkhin. Investigation of a real algebraic surface.. Program. Comput. Softw. 2015, 41, 74-82. https://doi.org/10.1134/S0361768815020036.
[10] I.Thompson. Understanding Maple, Cambridge University Press: Cambridge, UK, 2016.

Alexander Bruno
Singular Problems Department
Keldysh Institute of Applied Mathematics of RAS
Moscow, Russia
e-mail: abruno@keldysh.ru
Alijon Azimov
Algebra and Geometry Department
Samarkand State University after Sh. Rashidov
Samarkand, Uzbekistan
e-mail: Azimov_Alijon_Akhmadovich@mail.ru

